Indietro

ⓘ Criosfera




Criosfera
                                     

ⓘ Criosfera

La criosfera è la porzione di superficie terrestre coperta dallacqua allo stato solido e che comprende le coperture ghiacciate di mari, laghi e fiumi, le coperture nevose, i ghiacciai, le calotte polari ed il suolo ghiacciato in modo temporaneo o perenne.

La criosfera è una parte integrante del sistema climatico globale con importanti connessioni e retroazioni generate attraverso la sua influenza sulla radiazione solare assorbita dalla superficie, sui flussi di umidità, sulle nuvole, sulle precipitazioni, sullidrologia e sulla circolazione atmosferica ed oceanica. Attraverso questi processi, gioca un ruolo significativo anche nella risposta al mutamento climatico globale ed una sua accurata modellizzazione è parte fondamentale di ogni modello climatico.

                                     

1. Struttura

Lacqua ghiacciata si forma sulla superficie della Terra principalmente come coltre di neve, ghiaccio di acqua dolce nei laghi e fiumi, banchise, ghiacciai, calotte polari, suolo temporaneamente ghiacciato e permafrost terreno permanentemente ghiacciato. Il tempo di permanenza dellacqua in ognuno di questi sottosistemi criosferici varia in modo considerevole. La coltre di neve e il ghiaccio dacqua dolce sono essenzialmente stagionali e la maggior parte del ghiaccio nel mare, eccetto il ghiaccio nellArtide centrale, dura solo pochi anni, se non è stagionale. Una data particella dacqua nel ghiacciaio, calotte polari, o ghiaccio terrestre, comunque, può rimanere ghiacciato per 10-Template:Formatunum:100000) anni o anche più, e il ghiaccio che si trova in profondità in zone dellAntartide orientale può avere unetà di circa un milione di anni.

La maggior parte del volume di ghiaccio nel mondo si trova nella regione antartica, principalmente nella calotta polare antartica orientale. In termini di estensione, tuttavia, la neve invernale e lestensione del ghiaccio nellemisfero boreale coprono larea più grande, che a gennaio corrisponde mediamente al 23% dellarea della superficie emisferica. La grande estensione dellarea e limportante ruolo climatico di neve e ghiaccio, relativi alle loro uniche proprietà fisiche, indicano che la capacità di osservare e modellare la neve le estensioni di coltri di ghiaccio, spessore, e proprietà fisiche proprietà radiative e termiche è di particolare significato per la ricerca climatica.

Ci sono diverse proprietà fisiche fondamentali riguardo alla neve e al ghiaccio che modulano scambi di energia fra la superficie e latmosfera. Le proprietà più importanti sono lindice di riflessione della superficie albedo, la capacità di trasferire calore diffusività termica e mutare stato calore latente. Queste proprietà fisiche, insieme allirregolarità della superficie, lemissività, le caratteristiche dielettriche, hanno importanti implicazioni anche nellosservazione della neve e del ghiaccio dallo spazio. Per esempio, lirregolarità della superficie è spesso il fattore dominante che determina la forza della radiazione di ritorno dei radar. Le proprietà fisiche come la struttura del cristallo, densità, estensione, e contenuto di acqua liquida sono fattori importanti che riguardano gli spostamenti di calore ed acqua e la dispersione dellenergia nelle microonde.

La riflettanza della superficie della radiazione solare in arrivo è importante per lequilibrio dellenergia in superficie SEB, surface energy balance. Essa è il rapporto di riflessione alla radiazione solare incidente, comunemente riferito come albedo. I climatologi sono innanzitutto interessati ad unificare lalbedo sulla porzione dellonda corta dello spettro elettromagnetico ~0.3–3.5 nm, che coincide con il principale input dellenergia solare. In genere, i valore di albedo per superfici coperte di neve non in fusione sono alti ~80-90% tranne nel caso di foreste. Gli alti valori di albedo di neve e ghiaccio causano rapidi spostamenti nella riflettanza della superficie in autunno e primavera ad alte latitudini, ma il significato climatico globale di questo incremento è spazialmente e temporaneamente modulato dalla copertura nuvolosa. lalbedo planetario è determinato principalmente dalla copertura nuvolosa, anche a causa delle piccole quantità di radiazione solare totale ricevuta ad alte latitudini durante i mesi invernali. Lestate e lautunno sono periodi di nuvolosità medio-alta sullOceano Artico così la retroazione dellalbedo, associata con i grandi mutamenti stagionali nellestensione della banchisa, è fortemente ridotta. Groisman ed altri 1994 notarono che la coltre di neve mostrava la più grande influenza sullequilibrio radiativo della Terra nel periodo primaverile da aprile a maggio e che la radiazione solare era maggiore sopra le aree coperte di neve.

Le proprietà termiche degli elementi criosferici hanno anche importanti conseguenze climatiche. Neve e ghiaccio hanno una molto più bassa diffusività termica dellaria. La diffusività termica è una misura della velocità con la quale le onde di temperatura possono penetrare una sostanza. Neve e ghiaccio hanno un ordine di grandezza molto meno efficiente nel diffondere il calore rispetto allaria. La coltre di neve isola la superficie terrestre, e la banchisa isola il sottostante oceano, disaccoppiando linterfaccia superficie-atmosfera rispetto al calore e ai flussi di umidità. Il flusso di umidità da una superficie dacqua viene eliminata anche da un sottile strato di ghiaccio, laddove il flusso di calore attraverso il sottile ghiaccio continua ad essere consistente fino a che esso non raggiunga uno spessore in eccesso di 30–40 cm. Ad ogni modo, anche una piccola quantità di neve sopra il ghiaccio ridurrà drasticamente il flusso di calore rallentando il tasso della crescita del ghiaccio. Leffetto isolante della neve ha anche implicazioni maggiori per il ciclo idrologico. Nelle regioni non-permafrost, leffetto isolante della neve è tale che ghiaccia solo il suolo vicino alla superficie e il drenaggio delle acque profonde è ininterrotto.

Mentre in inverno neve e ghiaccio agiscono per isolare la superficie dalle grandi perdite di energia, essi funzionano anche per rallentare il riascaldamento nella primavera ed estate a causa della grande quantità di energia richiesta per fondere il ghiaccio il calore latente di fusione, 3.34 × 10 5 J/kg a 0 °C. Tuttavia, la forte stabilità statica dellatmosfera sopra aree di ampie distese di neve o ghiaccio tende a confinare leffetto del raffreddamento immediato ad uno strato relativamente poco profondo, in modo che le anomalie atmosferiche associate sono di solito di breve durata e locali, su scala regionale. In alcune aree del mondo come lEurasia, tuttavia, è noto che il raffreddamento associato con un pesante ammasso di neve ed umidi suoli primaverili giochi un ruolo nel modulare la circolazione dei monsoni estivi. Gutzler e Preston 1997 recentemente presentarono una dimostrazione per giustificare una simile retroazione della circolazione neve-estate nel Sud-Ovest degli Stati Uniti.

Il ruolo della coltre di neve nel modulare i monsoni è precisamente un esempio di una retroazione criosfera-clima a breve termine coinvolgendo la superficie terrestre e latmosfera. Dalla figura 1 è possibile vedere che ci sono numerose retroazioni di criosfera-clima nel sistema globale del clima. Queste agiscono sopra un vasto campo di scale spaziali e temporali, dal raffreddamento locale stagionale delle temperature dellaria alle variazioni su scala emisferica nelle calotte polari, nellarco di tempo di migliaia di anni. I meccanismi di retroazione coinvolti sono spesso complessi e non compresi ancora completamente.

                                     

1.1. Struttura Neve

La coltre di neve è la seconda area estensiva più grande di ogni componente della criosfera, con un massimo di estensione areale media di circa 47 milioni di km². La maggior parte dellarea terrestre coperta di neve snow-covered area, SCA è localizzata nellemisfero boreale, e la variabilità temporale è dominata dal ciclo stagionale; Lestensione della coltre di neve nellemisfero boreale varia da 46.5 milioni di km² a gennaio fino a 3.8 milioni di km² in agosto. La SCA dellinverno nordamericano ha mostrato un incremento per buona parte del secolo in gran parte come risposta a un incremento di precipitazioni.

Tuttavia, i dati satellitari disponibili mostrano che la coltre di neve invernale nellemisfero boreale ha fornito poca variabilità interannuale nel periodo che va dal 1972 al 1996, con un coefficiente di variazione COV=s.d./media della coltre a gennaio inferiore a 0.04. Secondo Groisman ed altri la coltre di neve nella primavera dellemisfero boreale 1994 mostrerebbe una diminuzione che tende a spiegare laumento delle temperature atmosferiche primaverili in questo secolo. Stime preliminari della SCA scaturite dai dati storici e ricostruiti in situ riguardo alla coltre di neve suggeriscono che questo sia il caso per lEurasia, ma non per lAmerica settentrionale, dove la coltre di neve primaverile è rimasta vicino ai livelli attuali nella maggior parte del secolo. A causa della relazione intima osservata tra la temperatura dellaria emisferica e lestensione della coltre di neve riguardo al periodo dei dati satellitari, cè un interesse notevole nel monitoraggio dellestensione della coltre di neve nellemisfero boreale per rilevare e monitorare il mutamento climatico.

La coltre di neve è un deposito estremamente importante nellequilibrio idrologico, specialmente gli ammassi di neve stagionale nelle zone montagnose del mondo. Sebbene limitata in estensione, la neve stagionale delle montagne della Terra si estende a vantaggio della maggiore fonte del deflusso delle correnti dei corsi dacqua e falde acquifere ricaricate su vaste aree di media latitudine. Per esempio, oltre l85% del deflusso annuale del bacino del Colorado trae origine dalla fusione delle nevi. Il deflusso della fusione di neve proveniente dalle montagne della Terra riempie i fiumi e ricarica le falde acquifere delle cui rosorse idriche dipendono oltre un miliardo di persone.

Inoltre, oltre il 40% delle aree protette del mondo sono montane, attestando il loro valore sia come ecosistemi unici bisognosi di protezione che come aree di ricreazione per la specie umana. Ci si aspetta che il riscaldamento climatico risulti nei maggiori cambiamenti dovuti alla separazione di neve, alle precipitazioni piovose e al tempismo della fusione delle nevi, che avranno importanti implicazioni per luso e la gestione delle risorse idriche. Questi mutamenti implicano anche potenzialmente retroazioni in un arco di tempo più lungo per il sistema climatico, attraverso mutamenti temporali e spaziali dellumidità del suolo e il deflusso verso gli oceani. I flussi di acqua dolce originati dalla coltre di neve che vanno a defluire verso lambiente marino possono essere importanti, poiché il flusso totale è probabilmente della stessa grandezza delle catene montuose desalinizzate ed aree di detriti della banchisa. Inoltre, cè la tendenza associata di sostanze inquinanti precipitate che si accumulano nellinverno artico con nevicate e sono rilasciate poi nelloceano per ablazione della coltre della banchisa.

                                     

1.2. Struttura Banchisa

La banchisa copre buona parte degli oceani polari e si forma dal congelamento dellacqua marina. I dati forniti dal satellite fin dagli inizi degli anni 70 rivelano una considerevole variabilità stagionale, regionale e interannuale nella banchisa che copre entrambi gli emisferi. Stagionalmente, lestensione della banchisa nellemisfero australe varia di un fattore di 5, da un minimo di 3-4 milioni di km² a febbraio ad un massimo di 17-20 milioni di km² a settembre. La variazione stagionale è molto minore nellemisfero boreale dove la natura limitata le alte latitudini dellOceano Artico danno come risultato una coltre di ghiaccio perenne molto più grande, e la terra circostante viene a delimitare lestensione verso lequatore del ghiaccio del periodo invernale. In questo modo, la variabilità stagionale dellestensione del ghiaccio nellemisfero boreale varia soltanto di un fattore di 2, da un minimo di 7-9 milioni di km² a settembre ad un massimo di 14-16 milioni di km² a marzo.

La coltre di ghiaccio mostra una variabilità interannuale su scala regionale molto più grande di quanto faccia a livello emisferico. Per esempio, nelle regioni dei Mari di Okhotsk e del Giappone, lestensione massima del ghiaccio diminuisce da 1.3 milioni di km² nel 1983 fino a 0.85 milion di km² nel 1984, una diminuzione del 35%, prima di ristabilizzarsi lanno seguente intorno a 1.2 milioni di km². Le fluttuazioni regionali in entrambi gli emisferi sono tali che per ogni periodo, di diversi anni di registrazione satellitare, alcune regioni mostrano un copertura di ghiaccio in diminuzione, mentre altre registrano una coltre di ghiaccio in aumento. Landamento complessivo indicato nella registrazione delle microonde in modo passivo, dal 1978 fino alla metà del 1995, mostra che lestensione della banchisa artica è in diminuzione del 2.7% per decennio. Un successivo lavoro indica che dal tardo ottobre del 1978 fino alla fine del 1996 lestensione della banchisa artica è diminuita del 2.9% per ogni decennio, mentre lestensione della banchisa antartica è aumentata del 1.3% per ogni decennio.



                                     

1.3. Struttura Congelamento di fiumi e laghi

Il ghiaccio si forma su fiumi e laghi in seguito al raffreddamento stagionale. Le dimensioni delle masse di ghiaccio coinvolte sono troppo piccole e dunque esercitano soltanto effetti climatici localizzati. Ad ogni modo, i processi di congelamento/scioglimento avvengono su larga scala e i fattori atmosferici locali, come quello della considerevole variabilità interannuale, esistono nelle date dellapparizione e scomparsa del ghiaccio.

Una serie di lunghe osservazioni sul ghiaccio dei laghi può servire come una documentazione climatica proxy e la monitorizzazione degli andamenti di congelamento e scioglimento possono fornire un indice stagionalmente specifico integrato e conveniente delle perturbazioni climatiche. Informazioni sulle condizioni del ghiaccio del fiume è meno utile come un proxy climatico perché la formazione del ghiaccio dipende fortemente dal regime del flusso del fiume, il quale è interessato da precipitazioni, scioglimento di neve e il deflusso dello spartiacque come pure può essere soggetto a interferenza umana la quale direttamente modifica il flusso del canale, oppure indirettamente attraverso pratiche per lutilizzo del suolo.

Il congelamento del lago dipende dallimmagazzinamento del calore nel lago e dunque dalla sua profondità, corso e temperatura di ogni afflusso, e gli scambi di energia fra acqua ed aria. Linformazione riguardo alla profondità del lago non è spesso disponibile, sebbene qualche indicazione sulla profondità dei laghi poco profondi dellArtico possa essere ottenuta da immagini fornite da radar aviotrasportato durante il tardo inverno e da immagini ottiche ottenute tramite strumentazione aviotrasportata durante lestate. Il tempismo timing dello scioglimento viene modificato dalla neve profonda sul ghiaccio come pure dal suo spessore e dallafflusso dacqua dolce.

                                     

1.4. Struttura Suolo ghiacciato e permafrost

Il suolo ghiacciato permafrost e il congelamento stagionale del suolo occupa approssimativamente 54 milioni di km² delle aree della terra dellemisfero boreale Zhang ed altri, 2003 e dunque ha la più grande estensione areale di ogni componente della criosfera. Il permafrost suolo ghiacciato perennemente può realizzarsi dove le "temperature medie annuali dellaria" MAAT, mean annual air temperatures sono inferiori a -1 o -2 °C ed è generalmente persistente dove le MAAT sono inferiori a -7 °C. Inoltre, la sua estensione e spessore sono interessati dal contenuto dellumidità nel suolo, copertura di vegetazione, neve profonda invernale e aspetto stagionale. Lestensione globale di permafrost non è ancora completamente conosciuta, ma soggiace approssimativamente nel 20% delle aree della regione dellemisfero boreale. Lo spessore supera i 600 m lungo la costa artica della Siberia del nord-est ed Alaska, ma, verso i margini, il permafrost diventa più sottile ed orizzontalmente discontinuo.

Le zone marginali saranno più immediatamente soggette ad ogni scioglimento provocato da un andamento del riscaldamento. La maggior parte del permafrost attualmente esistente si è formato durante le condizioni precedenti più fredde ed è dunque residuale. Tuttavia, il permafrost può formarsi sotto i climi polari del giorno doggi dove i ghiacciai arretrano o laffioramento della terra espone il suolo disgelato. Washburn 1973 concluse che la maggior parte del permafrost permanente è in equilibrio con il clima presente alla sua più elevata superficie, ma i mutamenti alla base dipendono dal clima attuale e flussi di calore geotermico; diversamente, la maggior parte del permafrost discontinuo è probabilmente instabile o" in tale delicato equilibrio che il più leggero mutamento climatico o di superficie produrrà un drastico disequilibrio”.

Sotto le condizioni di riscaldamento, la profondità in aumento dello strato attivo in estate ha impatti significativi sui regimi idrologici e geomorfici. La fusione e larretramento del permafrost è stato riportato nellalta Valle del Mackenzie e lungo il margine meridionale del suo verificarsi nel Manitoba, ma tali osservazioni non sono difficili da quantificare e generalizzare. Basato sui gradienti della latitudine media della temperatura dellaria, uno spostamento medio verso nord del confine del permafrost meridionale da 50 a 150 km potrebbe essere previsto, sotto condizioni di equilibrio, per un riscaldamento di 1 °C.

Soltanto una frazione della zona di permafrost è costituità dal ghiaccio terrestre attuale. Il restante permafrost secco è semplicemente suolo o roccia a temperature al di sotto del congelamento. Il volume di ghiaccio è generalmente più grande nella maggior parte degli strati superiori del permafrost e principalmente comprende ghiaccio poroso segregato nel materiale della Terra. Le misurazioni delle temperature dei fori praticati dalle sonde nel permafrost possono essere utilizzate come indicatori di mutamenti netti nel regime della temperatura. Gold e Lachenbruch 1973 dedussero un riscaldamento di 2-4 °C nellarco di tempo che va da 75 a 100 anni a Cape Thompson, Alaska, dove il 25% del più elevato permafrost spesso 400-m è instable rispetto a un profilo di equilibrio della temperatura con la profondità per la presente temperatura di superficie media annuale di -5 °C. Le influenze del clima marittimo possono avere influenzato questa valutazione, in un modo o nellaltro. A Prudhoe Bay dati simili implicano un riscaldamento di 1.8 °C negli ultimi 100 anni. Ulteriori complicazioni possono essere introdotte dai cambiamenti nelle profondità della coltre di neve e dalle perturbazioni naturali o artificiali della vegetazione in superficie.

I potenziali andamenti del permafrost che disgela sono stati stabiliti da Osterkamp 1984, ovvero: due secoli o meno per un permafrost di 25 metri di spessore nelle zone discontinue ed interne dellAlaska, considerando un riscaldamento che va da -0.4 a 0 °C in 3-4 anni, seguito da un successivo aumento di 2.6 °C. Sebbene la risposta della profondità del permafrost al mutamento di temperatura sia tipicamente un processo molto lento, cè una grande evidenza per il fatto che lo spessore dello strato attivo rapidamente risponde ad un mutamento di temperatura. Facendo una simulazione di riscaldamento o raffreddamento, il mutamento climatico globale avrà un effetto significativo sulla durata dei periodi liberi dal gelo nelle regioni con suolo ghiacciato sia stagionalmente che perennemente.

                                     

1.5. Struttura Ghiacciai e calotte polari

Le calotte polari sono le più grandi sorgenti potenziali di acqua dolce, contenenti approssimativamente il 77% delle risorse dellintero pianeta. Ciò equivale a 80 m del livello mare, con lAntartide in testa le cui riserve ammontano al 90%. La Groenlandia incide maggiormente nel rimanente 10%, con altre masse di ghiaccio e ghiacciai per meno del 0.5%. A causa della loro dimensione in relazione alle variazioni annuali di accumulo o fusione di neve, il tempo di permanenza dellacqua in masse di ghiaccio può estendersi a 100 000 o 1 milione di anni. Di conseguenza, ogni perturbazione climatica produce risposte lente, che accadono nei periodi glaciali ed interglaciali. I ghiacciai della valle rispondono rapidamente alle fluttuazioni climatiche con tipici tempi di risposta di 10-50 anni. Tuttavia, la risposta di singoli ghiacciai può essere asincrona rispetto alla stessa condizione climatica a causa delle differenze nella lunghezza del ghiacciaio, altezza, inclinazione, e velocità di spostamento. Oerlemans 1994 fornì la prova di un coerente ritiro del ghiacciaio su scala globale che potrebbe essere spiegato da una tendenza lineare di riscaldamento di 0.66 °C ogni 100 anni.

Mentre è probabile che le variazioni dei ghiacciai abbiano effetti minimi sul clima globale, la loro recessione può avere contribuito da un terzo a un mezzo allaumento del livello del mare osservato nel XX secolo. Inoltre, è estremamente probabile che tale estesa recessione del ghiacciaio come si è attualmente osservato nella Cordigliera Occidentale del Nord America, dove i deflussi dai bacini ghiacciati vengono utilizzati per lirrigazione ed energia idroelettrica, implicando significativi impatti idrologici e riguardanti lecosistema. Leffettiva pianificazione delle risorse idriche e lattenuazione dellimpatto in tali aree dipende dallo sviluppo di una conoscenza sofisticata dello stato del ghiaccio nel ghiacciaio e il meccanismo che causa i suoi mutamenti. Inoltre, una chiara comprensione del meccanismo in azione è cruciale per interpretare i segnali del mutamento globale che sono rilevabili nella serie di registrazioni riguardo allequilibrio di massa del ghiacciaio nellarco del tempo.

Come per lequilibrio di massa del ghiacciaio le stime riguardo alle grandi calotte polari portano unincertezza del 20%. Studi basati sulle nevicate e riguardo alla massa prodotta tendono ad indicare che le calotte polari sono vicine allequilibrio o emettono acqua negli oceani. Studi sul mare suggeriscono linnalzamento del livello marino dallAntartico o la rapida fusione basale delle piattaforme di ghiaccio. Alcuni autori hanno asserito che la differenza fra il tasso osservato dellinnalzamento del livello del mare circa 2 mm/anno e il tasso dellinnalzamento del livello del mare dovuto alla fusione dei ghiacciai montani, espansione termica delloceano, ecc. circa 1 mm/anno o meno è simile allo squilibrio modellato sullAntartico circa 1 mm/anno di innalzamento del livello marino;, suggerendo un contributo dellinnalzamento del livello proveniente dallAntartico.

Le relazioni fra clima globale e mutamenti nellestensione del ghiaccio sono complesse. Lequilibrio della massa dei ghiacciai terrestri e delle calotte polari è determinato dallaccumulazione di neve, soprattutto in inverno, e lablazione ottenuta nella stagione calda, dovuta principalmente alla radiazione di rete e ai turbolenti flussi di calore per fondere ghiaccio e neve dallavvezione aria-caldo, Ad ogni modo, la maggior parte della regione antartica non ha mai sperimentato la fusione superficiale. Dove le masse di ghiaccio terminano nelloceano, i distacchi di iceberg sono i maggiori contributori alla perdita di massa. In questa situazione, il margine del ghiaccio può estendersi dentro lacqua profonda come una piattaforma galleggiante, come quello nel Mare di Ross. Nonostante la possibilità che il riscaldamento globale potrebbe apportare perdite al ghiacciaio della Groenlandia essendosi spostato per favorire la calotta polare antartica, cè maggiore preoccupazione riguardo alla possibilità che un ghiacciaio dellAntartico Occidentale collassi. Il ghiacciaio dellAntartico Occidentale è fondato su roccia posta al di sotto del livello del mare, e il suo collasso ha il potenziale di innalzare il livello del mare di tutto il mondo di 6–7 m nel giro di poche centinaia di anni.

La maggior parte della scarico del ghiaccio dellAntartico Occidentale avviene attraverso i cinque maggiori flussi glaciali presenti in quella parte della calotta, tra cui quelli penetranti nella barriera di Ross, il flusso glaciale Rutford, che alimenta la piattaforma glaciale Ronne-Filchner, sul Mare di Weddell, e i ghiacciai Thwaites e Pine Island, che entrano nel mare di Amundsen. Le opinioni sono discordi attualmente riguardo allequilibrio di massa di questi sistemi, principalmente a causa dei dati limitati.