Indietro

ⓘ Tomografia computerizzata




Tomografia computerizzata
                                     

ⓘ Tomografia computerizzata

La tomografia computerizzata, in radiologia, indicata con lacronimo TC o CT, è una tecnica di indagine radiodiagnostica, con la quale è possibile riprodurre immagini in sezione e tridimensionali dellanatomia, create da unanalisi generata al computer, dellattenuazione di un fascio di raggi X mentre passa attraverso una sezione corporea.

È nota anche come tomografia assiale computerizzata o TAC in inglese CAT da computed axial tomography. Il principio è che da proiezioni di un oggetto in molte direzioni la perfezione si avrebbe solo con infinite proiezioni si può ricostruire limmagine delloggetto. Inizialmente il software di elaborazione permetteva solo il piano assiale o trasversale, perpendicolare cioè allasse lungo del corpo. Il vero valore aggiunto delle macchine attuali però è che le proiezioni non sono più su piani distinti ma a spirale facendo scorrere il lettino su cui si trova il paziente. Ciò permette successivamente di ottenere ricostruzioni tridimensionali del segmento corporeo esaminato.

Anche se il suo utilizzo peculiare è nel campo della medicina, la TC è utilizzata anche in altri campi, come ad esempio test non distruttivi dei materiali; in questo ambito viene definita Tomografia industriale computerizzata. Un altro esempio è il suo utilizzo in archeologia per ottenere le immagini dei contenuti di sarcofagi o delle mummie.

Lutilizzo della TC in ambito medico è notevolmente aumentato nei due decenni a cavallo tra il XX e il XXI secolo. Si stima che circa 72 milioni di scansioni siano state eseguite solamente negli Stati Uniti nel 2007. Si stima inoltre che lo 0.4% dei casi di cancro attualmente in corso negli Stati Uniti sia dovuto allesposizione alle radiazioni dei raggi X utilizzati nelle scansioni TC.

                                     

1. Storia

Nel 1930 il radiologo italiano Alessandro Vallebona propose una tecnica per rappresentare un solo strato del corpo sulla pellicola radiografica, la stratigrafia. Sfruttando principi di geometria proiettiva, con la rotazione o pendolazione del tubo radiogeno tutti i piani al di sopra e al di sotto dello strato di interesse vengono eliminati. La stratigrafia ha rappresentato fino alla metà degli anni ottanta uno dei pilastri della diagnostica radiologica. Con lavvento del computer è stata progressivamente soppiantata.

La metodica circolare alla base della tomografia assiale computerizzata fu inizialmente concepita, nel 1967, dallingegnere inglese Sir Godfrey Hounsfield che realizzò la prima apparecchiatura TAC insieme al fisico sudafricano Allan Cormack presso il Central Research Laboratories della EMI a Hayes nel Regno Unito. Tali ricerche valsero ai due scienziati il premio Nobel per la medicina nel 1979 con la motivazione the development of computer assisted tomography ", premio che condivisero con Allan McLeod Cormack della Tufts University del Massachusetts, il quale propose indipendentemente dai due una tecnica simile. Il primo tomografo computerizzato commerciale consentiva esclusivamente lo studio delle strutture del cranio e fu installato allAtkinson Morley Hospital di Londra nel 1971.

Il prototipo originale del 1971 era caratterizzato da ununità di scansione che ruotava di 180°, un grado alla volta, intorno la testa del paziente, immagazzinando 160 immagini da ogni posizione, per un totale di 28 800 immagini; tale procedimento richiedeva da 5 a oltre 10 minuti. Le immagini ottenute, quindi, venivano elaborate con algoritmi di ricostruzione algebrici grazie allutilizzo di un grande calcolatore che impiegava 2 ore e mezza per eseguire tali calcoli. Le immagini dellencefalo così ottenute rendevano possibile apprezzare i diversi tessuti di cui esso è composto; i medici riconobbero subito il valore e lutilità di tale tecnologia e, nonostante il prezzo fosse molto elevato, circa 300 000 $, cifra considerevole per quel periodo, la EMI Corporation non ebbe difficoltà a vendere il prodotto. Negli Stati Uniti la prima installazione di un tomografo computerizzato avvenne presso la Mayo Clinic. In Italia il primo TAC EMI viene installato a Bologna nel 1974 presso lOspedale Bellaria a cura del Prof. Giovanni Ruggiero che lanno seguente sarà eletto presidente della ESNR – European Society of Neuroradiology.

Inizialmente, fu opinione comune e fortemente radicata che linnovativa tecnica non potesse in alcun modo travalicare lambito dello studio del cervello. Fu un radiologo americano di origine italiana, il professor Ralph Alfidi, ad avere lintuizione che tale metodica poteva essere estesa allintero corpo. Alfidi, allora direttore dellIstituto di Radiologia dellUniversità di Cleveland, già noto per i suoi studi sullangiografia, era convinto che il principio della tomografia computerizzata fosse destinato ad avere una ben più ampia utilizzazione. Circondato da unatmosfera di scetticismo, Alfidi, con lappoggio di un Hounsfield inizialmente titubante, ma via sempre più convinto della validità di questa idea, iniziò un lungo periodo di ricerche. Gli esperimenti vennero attuati utilizzando macchinari realizzati nel 1972 dalla Technicare e culminarono nel 1975 con leffettuazione del primo impiego della TAC per lo studio delladdome.

Il primo sistema TC in grado di realizzare immagini di qualsiasi parte del corpo fu lACTA Automatic Computerized Transverse Axial progettato da Robert Ledley, presso la Georgetown University. Questa macchina possedeva, come rilevatori, 30 tubi fotomoltiplicatori ed era in grado di completare una scansione in soli nove cicli di traslazione/rotazione, una velocità molto superiore a quella dellapparecchiatura della EMI. Utilizzava 34 calcolatori PDP-11 sia per comandare i servo-meccanismi, sia per acquisire ed elaborare le immagini. La casa farmaceutica Pfizer acquista il prototipo dalluniversità, insieme con i diritti per la fabbricazione di esso. Pfizer ha iniziato quindi a commercializzare il modello, chiamandolo "200FS" FS significa" scansione veloce”, ottenendo un grande successo nelle vendite. Questa apparecchiatura produceva immagini in una matrice di 256×256, consentendo una molto migliore risoluzione spaziale rispetto a quella della EMI che era di 80×80.

Da questo momento in poi la tecnologia della TAC migliorò costantemente, anche grazie alla sempre maggiore capacità di calcolo dei computer. I grandi miglioramenti nella velocità di scansione, nel numero di proiezioni acquisibili e nella qualità delle immagini, sono stati fondamentali perché tale tecnologia venisse presa in considerazione anche per limaging cardiaco. Nel 2008 Siemens ha introdotto una nuova generazione di scanner in grado di acquisire un volume di una certa dimensione in meno di 1 secondo, una velocità sufficiente per produrre immagini nitide di cuori che battono e delle arterie coronarie.

                                     

2. Metodica

La legge dellassorbimento dei raggi X spiega come, dato un fascio di raggi X di una certa intensità iniziale I 0 {\displaystyle I_{0}}, esso venga attenuato in intensità I t {\displaystyle It} in misura esponenzialmente decrescente al coefficiente di attenuazione di massa μ {\displaystyle \mu } e al cammino percorso nel mezzo t {\displaystyle t}. Il coefficiente di attenuazione di massa dipende dalla densità ρ {\displaystyle \rho } del materiale attraversato e dallenergia E {\displaystyle E} del fascio di raggi X.

I t = I 0 e − μ t {\displaystyle It=I_{0}e^{-\mu t}}

Quindi il fascio di raggi X attraversando un oggetto verrà attenuato tanto più quanto attraverserà materiali ad alto numero atomico, tanto più sarà bassa lenergia e maggiore sarà lo spessore attraversato; viceversa, se attraversa un materiale a bassa densità, percorre uno spessore piccolo e lenergia è più alta, allora lattenuazione sarà minore. Questo è il motivo per cui nelle radiografie analogiche gli oggetti a densità maggiore appaiono chiari massima attenuazione e gli oggetti a densità minore appaiono più scuri minima attenuazione.

Il principio iniziale su cui si basa la ricostruzione tomografica è che acquisendo tante proiezioni radiografiche dello stesso oggetto ad angolazioni diverse è possibile ricostruire loggetto nelle due dimensioni. Per ottenere la terza dimensione si utilizzano complessi algoritmi matematici che elaborano i pixel delle successive scansioni tra i quali i metodi di retroproiezione filtrata algoritmo Filtered Back Projection, FBP se il fascio di raggi X è parallelo o a ventaglio, il metodo di Feldkamp se il fascio è conico oppure metodi iterativi. Ovviamente per poter applicare questi algoritmi è necessario riprendere le proiezioni radiografiche in immagini digitali cioè una matrice di numeri organizzata il cui più piccolo elemento è chiamato pixel e il valore al suo interno è un numero in scala di grigi a cui corrisponde una misura dellattenuazione del fascio in quel punto. Dopo aver applicato gli algoritmi di ricostruzione si ottiene unimmagine digitale che rappresenta la distribuzione della densità delloggetto in una sua sezione interna slice e il cui più piccolo elemento viene chiamato voxel in quanto si tratta di un elemento di volume. Quanto più piccolo è il volume rappresentato da un voxel, tanto maggiore è la risoluzione spaziale. Per velocizzare le acquisizioni ora sono concatenate in acquisizioni di dati con movimento a spirale ottenuto muovendo non il gantry ovviamente ma il lettino col paziente durante lacquisizione della riga di dati iniziali dati h.

Al fine di confrontare i risultati della tomografia ottenuti da diversi strumenti tomografici si definisce e si prende a riferimento la Scala di Hounsfield. Lunità di misura dei valori numerici ricostruiti è HU unità di Hounsfield. Il numero allinterno del voxel è detto n u m e r o C T {\displaystyle numero\ CT}, rappresenta la densità delloggetto in quel punto e si misura in HU se opportunamente calibrato secondo la seguente relazione:

n u m e r o C T = 1000 μ − μ H 2 O μ H 2 O {\displaystyle numero\ CT=1000{\frac {\mu -\mu _{H_{2}O}}{\mu _{H_{2}O}}}}

La formula per il calcolo delle HU evidenzia come lacqua venga presa a riferimento. Infatti il numero CT dellacqua è ovviamente 0 HU; la densità dellaria è considerata nulla μ = 0 {\displaystyle \mu =0} e quindi il numero CT dellaria assume un valore di -1000 HU; per losso, che ha una densità allincirca doppia di quella dellacqua, il numero CT è +1000 HU.

Le dimensioni di unimmagine tomografica in uno scanner medicale standard sono normalmente di 512×512 voxel e profondità di 16 bit/pixel, anche se la tecnologia attuale permette di ottenere risultati anche migliori sia in termini di numero di voxel che di risoluzione spaziale. La metodica TC consente risultati migliori della radiologia tradizionale per quanto riguarda la differenziazione dei tessuti molli. Infatti la TC produce un volume di dati che possono essere manipolati, attraverso un sistema noto come windowing ", per visualizzare le varie strutture anatomiche interne di un corpo in base alla loro capacità di attenuare il fascio di raggi X. Lo studio TC, a seconda dei distretti corporei e degli organi da valutare, può essere implementato con linfusione di mezzo di contrasto endovenoso organo-iodato, che consente una migliore differenziazione di strutture con densità simile, o la valutazione della stessa struttura in tempi diversi, con acquisizioni multiple delle immagini e attraverso luso di un iniettore a flusso variabile.

Questo strumento diagnostico permette di settare lo spessore delle scansioni, che a seconda della tecnologia della macchia può influire in modo differente sulla regolazione, lo spessore minimo impostabile è generalmente 0.5 mm, questo parametro oltre ad influire sul numero delle scansioni, delle radiazioni e in alcuni casi anche sulla velocità desecuzione, ha effetti anche sulla precisione e dettaglio dellimmagine.

                                     

3. Il tomografo computerizzato

Lemettitore del fascio di raggi X ruota attorno al paziente ed il rivelatore, al lato opposto, raccoglie limmagine di una sezione del paziente; il lettino del paziente scorre in modo molto preciso e determinabile allinterno di un tunnel di scansione, presentando a ogni giro una sezione diversa del corpo. Le sequenze di immagini, assieme alle informazioni dellangolo di ripresa, sono elaborate da un computer, che presenta il risultato sul monitor.

Tale risultato è costituito da una serie di sezioni non necessariamente contigue di spessore preimpostato: linsieme delle sezioni ricostruite costituiscono i dati inerenti al volume di scansione che possono essere ricostruiti da un software di rendering tridimensionale per produrre immagini tomografiche di qualsiasi piano spaziale o, in alternativa, per ottenere immagini tridimensionali o endoscopiche. Per ottenere le immagini tomografiche del paziente a partire dai dati "grezzi" della scansione RAW Data il computer dedicato alla ricostruzione impiega complessi algoritmi matematici di ricostruzione dellimmagine. I processi più importanti per ottenere le immagini dai dati grezzi sono la convoluzione e la retroproiezione o backprojection trasformata di Radon. Le immagini di partenza di tutte le sezioni vengono normalmente registrate su un sistema di archiviazione PACS le sezioni più importanti vengono talvolta stampate su pellicola. Il rivelatore ad alta efficienza è normalmente costituito da cesio ioduro, calcio fluoruro, cadmio tungstato.



                                     

3.1. Il tomografo computerizzato Le "generazioni" dei tomografi computerizzati

I primi modelli di tomografi computerizzati, chiamati in seguito di prima generazione ", erano costituito da un tubo radiogeno che emetteva un fascio lineare di raggi X. Per eseguire una scansione il tubo radiogeno compiva prima una traslazione e poi una rotazione di un grado; questi due movimenti venivano ripetuti per 180 volte al fine di ottenere una rotazione complessiva intorno al paziente di 180° per un totale di 28.800 acquisizioni 180 proiezioni angolari X 160 raggi di proiezione. Solidale al tubo radiogeno e posto in posizione diametralmente opposta, vi era un unico detettore, in grado di rilevare lattenuazione del fascio di raggi X. Il valore dellattenuazione veniva poi trasformato in un segnale elettrico che, rielaborato, permetteva di calcolare la densità del volume di corpo che era stato attraversato e da qui ricostruire le immagini assiali. Generalmente, queste apparecchiature erano molto lente per via della lunga sequenza di traslazioni e rotazioni e in grado di produrre immagini solamente di bassa risoluzione spaziale.

La seconda generazione di tomografi, introdotti dal 1974 presso la Cleveland Clinic, presentò notevoli progressi. Per prima cosa la geometria del fascio radiante da lineare è diventata" a ventaglio”, con unampiezza di 20-30 gradi, e conseguentemente è aumentato il numero dei detettori che è passato da 1 ad un gruppo di 20-30 sempre solidali e contrapposti al tubo radiogeno. Ciò ha permesso di evitare al tubo radiogeno il movimento di traslazione, lasciando solo quello di rotazione intorno al paziente, con un conseguente notevole risparmio di tempo una singola scansione con questa generazione di tomografi comportava solo alcune decine di secondi e di complessità meccanica.

Grazie ad un miglioramento della tecnologia, piuttosto che lapplicazione di principi di funzionamento innovativi, i tomografi di terza generazione introdotti nel 1975 soppiantarono quelli delle generazioni precedenti ed ebbero un tale successo che la maggior parte delle apparecchiature odierne 2016 appartengono a questa categoria. Essi si differenziano da quelli della seconda generazione per via del fascio a raggi X ancora più ampio dai 30 ai 50 gradi tanto da riuscire a comprendere lintera porzione anatomica da studiare. Anche il numero dei detettori risulta ampiamente aumentato, raggiungendo le diverse centinaia di elementi. I detettori, inoltre, spesso vengono disposti su più di una fila, in modo da poter acquisire più sezioni in ununica rotazione del tubo, rendendo lacquisizione estremamente veloce tanto da poter essere utilizzata per lo studio del cuore in movimento.

Nei primi modelli, ad una rotazione ne seguiva unaltra nel senso inverso, in modo che i cavi di alimentazione ritornassero nella posizione di partenza, senza attorcigliarsi. Tale metodica obbligava allacquisizione di un solo strato per volta. A partire dal 1989, venne introdotta unulteriore caratteristica fondamentale per velocizzare lesecuzione dellintero esame: leliminazione dei cavi di alimentazione del tubo radiogeno che impedivano la rotazione continua dello stesso, in vantaggio delladozione di contatti striscianti che forniscono lenergia elettrica al tubo. Identica tecnica è utilizzata per le linee di dati dei detettori che rimangono solidali al tubo. Grazie a tutto ciò, i tomografi di terza generazione sono in grado di eseguire acquisizioni con voxel isotropico delle stesse dimensioni sui tre lati e a spirale, con la conseguente possibilità di ricostruire le immagini su più piani e tridimensionalmente.

I tomografi di quarta generazione presentavano sensori fissi disposti circolarmente su tutto lanello del gantry e sono stati abbandonati.

I tomografi moderni derivano da quelli di terza generazione ma hanno una caratteristica fondamentale, quella di acquisire a spirale: nei tomografi a rotazione continua unidirezionale infatti il tubo radiogeno e i rilevatori sono montati su un anello rotante che si alimenta a "contatti striscianti" slip ring, senza più il problema dei cavi che si attorcigliano. Questa metodica consente lacquisizione delle immagini in modo continuo: mentre il tavolo che porta il paziente si muove su un piano di scorrimento, i piani di scansione descrivono unelica attorno al paziente, ottenendo una scansione "a spirale". Ultimamente la tecnica di scansione adottata è la volumetrica. L’evoluzione tecnologica ha infatti permesso di ottenere detettori molto larghi;ad esempio l’ultima generazione di tac Toshiba/Canon permette una acquisizione istantanea di 320 canali dalla larghezza di 0.5 millimetri ciascuno, ottenendo così una acquisizione volumetrica di 160 millimetri di profonditá in meno di mezzo secondo.

                                     

3.2. Il tomografo computerizzato Tecnologia multistrato

I tomografi computerizzati a multi-strato sono una nuova famiglia di tomografi ad alto livello di dettaglio anatomico fino a 0.5 mm e di recente introduzione della quale i primi esempi risalgono al 1998. Una corona di sensori detti detettori registra lattenuazione di un fascio radiogeno raggi X rotante intorno ad un soggetto e trasformano attraverso elaborazioni matematiche questi dati in immagini leggibili da radiologi esperti. Le prime TC multistrato o multislice avevano 2 corone di detettori.

Ad oggi le migliori hanno 640 file di detettori. Sono possibili indagini accurate di endoscopia virtuale del colon in alternativa al clisma opaco ma la colonscopia a fibre ottiche conserva il vantaggio dellanalisi bioptica della eventuale lesione o addirittura della sua estemporanea asportazione - ad esempio, un piccolo polipo. Unaltra importante applicazione è lanalisi vascolare di piccole arterie come le coronarie che si possono studiare, in soggetti non affetti da patologia acuta, in alternativa alla più invasiva coronarografia, e gli esami cardiologici dove la TAC multi-strato consente lo studio del cuore in un solo battito cardiaco, riducendo al minimo possibile le dosi di radiazione previste per il paziente. In generale, le immagini prodotte consentono un dettaglio anatomico eccezionale a fronte però di un consistente aumento della dose efficace di radiazioni al paziente, ragione per cui è molto importante la giustificazione razionale allesame diagnostico.

Altrettanto importante è che la dose somministrata sia la minima indispensabile per ottenere il risultato diagnostico voluto in inglese ALARA = as low as reasonably achievable, tanto bassa quanto ragionevolmente ottenibile.

Attualmente esistono metodiche di TC dette Dual Energy ", che consentono di ridurre ulteriormente la dose alla popolazione, utilizzando due tubi di kilovoltaggio diverso, risparmiando il passaggio della scansione senza mezzo di contrasto limmagine si può ottenere confrontando le due immagini ottenute e sottraendo le U.H. del contrasto.

                                     

3.3. Il tomografo computerizzato Tomografi computerizzati a spirale

I tomografi spiroidei più comuni compiono una rotazione in più o meno un secondo e consentono unacquisizione completa di un volume corporeo in 40 secondi - un minuto: questa avviene in ununica apnea, riducendo gli artefatti di movimento del paziente. I moderni tomografi multistrato possono impiegare anche solo pochi secondi, ottenendo decine di scansioni per ogni singola rotazione. Tomografi superveloci possono consentire lo studio del cuore. Recentemente è stata ideata anche una tecnica che consente lesecuzione di una vera e propria colonscopia virtuale.

Sempre recentemente si assiste alla comparsa di TC con doppio tubo radiogeno, dette "dual source". Queste TC dispongono per lappunto di due tubi radiogeni che funzionano a differenti energie; in questo modo, a causa della differente attenuazione dei tessuti sulle radiazioni a energia differente, si riesce ad avere una risoluzione di contrasto migliore.



                                     

4.1. Impiego clinico Studio del cranio e dellencefalo

Uno degli utilizzi più frequenti, tanto da diventare il gold standard per la diagnosi di molte patologie, della tomografia computerizzata è lo studio del cranio e dellencefalo. La complessità di questa regione anatomica e la presenza di numerose strutture sovrapposte, nonché la necessità di visualizzare dettagli spesso propedeutici ad un intervento neurochirurgico, rende indispensabile la possibilità di ottenere immagini multi-planari ad alta risoluzione. Nonostante la risonanza magnetica stia acquisendo sempre maggiore importanza per quanto riguarda lo studio dellencefalo, la TC garantisce tempi di esecuzione nettamente inferiori, non presenta problematiche relative alla presenza di forti campi magnetici e di claustrofobia, rendendo tale metodica la prima scelta, nonché la più adatta in situazioni di emergenza come traumi cranici e sospetti ictus cerebrali emorragici o ischemici.

Per quanto riguarda lo studio dellencefalo, lesame consiste in una scansione con o senza mezzo di contrasto che comprenda la regione che va dal foro occipitale fino al vertice del cranio, seguendo un orientamento che può basarsi su diversi piani anatomici generalmente orbito-meatale o neuro-oculare. Lo studio può essere completato da una ricostruzione multi-planare delle immagini ottenute tramite i tre piani spaziali. Solitamente la TC encefalo viene utilizzata per la diagnosi di lesioni cerebrali e cerebellari di varia eziologia, neoplasie, ictus, forme di demenza senile, idrocefali.

Anche per lo studio delle strutture ossee del cranio la tomografia computerizzata può trovare un largo impiego. Tramite questa metodica sono infatti spesso studiate le orbite, le rocche petrose nonché la sella turcica; lo studio delle ultime due trae particolare beneficio dalla possibilità di una ricostruzione MPR sul piano coronale. La TC rappresenta lesame di elezione per lo studio dellintero massiccio facciale per la ricerca di neoplasie, polipi dei seni paranasali, sinusite, processi infiammatori o per la valutazione di traumi.

Tomografi computerizzati con acquisizione volumetrica possono essere utilizzati, grazie allimpiego del mezzo di contrasto iodato, per approfonditi studi angiografici dei vasi che perfondono lencefalo arterie carotidi e poligono di Willis, di cui spesso è richiesta una ricostruzione tridimensionale al fine di visualizzare al meglio la morfologia e leventuale presenza di aneurismi o stenosi.

                                     

4.2. Impiego clinico Studio delle arcate dentarie

Le limitazioni dellortopantomografo rendendo in alcuni casi la tomografia computerizzata quasi indispensabile per lo studio delle arcate dentarie. In particolare, limplantologia computer assistita necessita di immagini tridimensionali affinché possa essere effettuata la pianificazione dellintervento. In particolare la tomografia computerizzata, in ambito di implantologia è utile per la stima della qualità e quantità dellosso dove verrà posizionato limpianto, nonché la valutazione degli spazi necessari affinché non si corra il rischio di lesionare il nervo alveolare o perforare il seno mascellare. Dalla fine degli anni 1990, alla tradizionale metodica, si è affiancata la tomografia computerizzata cone beam, che utilizza un fascio a raggi X conico invece che" a spazzola”, la quale si sta sempre più affermando in ambito odontoiatrico-maxillo facciale.

                                     

4.3. Impiego clinico Studio del collo

La complessità delle strutture anatomiche presenti nel collo e la rapidità di esecuzione dellesame rendono la tomografia computerizzata, insieme alla risonanza magnetica e allecografia, una delle metodiche di elezione per lo studio di questa regione. Se la valutazione di eventuali fratture trova nella TC il suo migliore strumento, essa può essere efficacemente utilizzata, spesso ricorrendo anche alla somministrazione di mezzo di contrasto, per la ricerca di neoplasie benigne o maligne della rinofaringe, della laringe e della ipofaringe, nonché di linfomi. Lo studio della tiroide viene spesso eseguito tramite altre metodiche come lecografia o la scintigrafia tiroidea tuttavia anche la TC può essere impiegata per la valutazione del gozzo tiroideo e dei tumori tiroidei, anche se spesso nei pazienti con ipertiroidismo è necessario rinunciare allutilizzo del mezzo di contrasto per evitare crisi tireotossiche.

                                     

4.4. Impiego clinico Studio del torace

Storicamente, dopo lo studio dellencefalo, il torace è il secondo distretto corporeo ad essere stato studiato tramite tomografia computerizzata ricavando ottimi risultati, tanto da diventare la metodica diagnostica standard per molte patologie. Infatti, la radiografia del torace, nonostante sia di larghissimo impiego, risulta limitata a causa della sovrapposizione delle strutture anatomiche problematica solo in parte superabile dallesecuzione di due proiezioni perpendicolari che dalla imprecisione su alcune patologie che non permette sempre di ottenere una diagnosi precisa. Inoltre, la risonanza magnetica, per via dei principi fisici alla base del suo funzionamento, poco si presta allo studio dei polmoni caratterizzati dalla presenza di ampi volumi di aria nonché da un continuo movimento così come per il cuore per il quale è necessaria una metodica come la TC in grado di scansionare lintero torace in pochi secondi.

Lampio uso della tomografia computerizzata per lo studio del torace ha portato allo sviluppo di particolari algoritmi di ricostruzione delle immagini, di filtri e di tecniche che permettono di ottimizzare lesame a seconda dellorgano toracico esaminato e della patologia sospettata. Inoltre, questa metodica risulta fondamentale e praticamente esclusiva per guidare il radiologo interventista nella biopsia di tessuti presenti allinterno della cavità toracica.

Per quanto riguarda i vasi sanguigni, la TC del torace trova larghissimo impegno nello studio dellarco aortico, in particolare alla ricerca di aneurismi o dissecazioni nonché per la valutazione post-operatoria e nel follow up. Grazie alla TC è inoltre possibile diagnosticare la presenza di una tromboembolia polmonare. Tutti gli esami vascolari richiedono, solitamente, la somministrazione di mezzo di contrasto e spesso sono eseguiti in situazioni di emergenza dove la velocità della metodica risulta essere di fondamentale importanza.

Lo studio del polmone può essere effettuato con grande precisione grazie alla TC per una moltitudine di patologie, al fine sia di giungere ad una diagnosi definitiva sia per inquadrare meglio il paziente per successivi indagini. Le ricostruzioni multi-planari possono risultare molto utili nel caso della valutazione di un tumore polmonare o broncopolmonare al fine di conoscere al meglio la sua sede e i rapporti anatomici oltre alla identificazione della dimensione dei linfonodi. Una acquisizione ad alta risoluzione può essere fondamentale per una corretta valutazioni di alcune patologie dellapparato respiratorio inferiore come, ad esempio, fibrosi polmonare, bronchiettasie, stenosi delle vie respiratore, BPCO, asbestosi, polmoniti, tubercolosi polmonare.



                                     

4.5. Impiego clinico Studio del cuore

Grazie alla disponibilità sul mercato di tomografi computerizzati multi-strato sempre più veloci in grado di acquisire notevoli volumi corporei in pochissimo tempo, è stato possibile estendere lutilizzo di tale metodica anche allo studio del muscolo cardiaco che nel soggetto vivo si presenta in continuo movimento. Numerosi studi sono stati effettuati per comparare la capacità prognostica dellesame delle calcificazioni delle arterie coronarie tramite le tecniche non invasive come la TC multistrato, la electron beam tomography e la risonanza magnetica rispetto alla angiografia coronarica realizzata per via percutanea; al 2016 questultima vanta ancora risultati iconografici migliori in particolare per quanto riguarda la risoluzione spaziale e il miglior rapporto segnale/rumore, tuttavia queste differenze si stanno attenuando grazie ai progressi tecnologici dei tomografi. Inoltre, lacquisizione di immagini cardiache può essere utile anche per la pianificazione di interventi cardiochirurgici, come quelli relativi alla valvola mitralica.

Gli scopi diagnostici per cui si può ricorrere alla tomografia computerizzata in abito cardiologico sono la valutazione della calcificazione delle coronarie, lo studio morfologico del cuore, delle arterie coronariche e delle vene cardiache. Lesame si realizza con la somministrazione di mezzo di contrasto per via venosa e ci si avvale di un sistema ve ne sono di vario tipo a seconda della casa costruttrice dellapparecchiatura per la sincronizzazione delle acquisizioni con la frequenza cardiaca, in modo da minimizzare gli artefatti da movimento ed escludere le fasi del ciclo cardiaco meno utili tipicamente la diastole e la protodiastole. Questa tecnica risulta, tuttavia, poco efficace nei pazienti che presentano aritmia e dunque una maggiore variabilità nel ritmo cardiaco. Le immagini ottenute possono essere poi ricostruite con vari algoritmi, alcuni creati ad hoc per le indagini cardiache, a seconda della patologia da studiare e dalle necessità diagnostiche.

Se lutilizzo della TC è certamente meno invasivo di una coronarografia realizzata per via percutanea, uno degli svantaggi è lalta dose circa 8–10 mS di radiazioni ionizzanti a cui deve essere sottoposto il paziente al fine di ottenere immagini a qualità sufficiente. Sono allo studio protocolli di acquisizione sempre più efficaci in modo da poter ridurre sensibilmente tale dose.

                                     

4.6. Impiego clinico Studio delladdome

Vi sono molte situazioni cliniche che interessano la regione e gli organi addominali che possono essere studiate tramite tomografia computerizzata. Spesso, tali studi richiedono più di una scansione in quanto è necessario valutare le immagini sia senza mezzo di contrasto che dopo la sua somministrazione, in modo da poter valutare al meglio la vascolarizzazione, caratterizzare alcune masse sospette, evidenziare i parenchimi e studiare il funzionamento dellapparato urinario. Ciò può comportare lesposizione a notevoli dosi di radiazioni ionizzanti.

Il fegato le vie biliari possono essere studiate tramite TC alla ricerca e per la caratterizzazione di lesioni focali benigne come cisti ed emangiomi o maligne epatocarcinoma e colangiocarcinoma e metastasi. La particolare vascolarizzazione del fegato sistema portale richiede spesso leffettuazione di due o tre scansioni a distanza di alcuni minuti per valutare la diffusione del mezzo di contrasto nel tempo.

Il pancreas viene studiato perlopiù per la diagnosi di pancreatite acuta e cronica, nonché per i vari tumori che lo possono colpire.

Lapparato urinario ben si presta ad essere studiato con la TC. Acquisizioni effettuate pochi istanti dopo la somministrazione di mezzo di contrasto permettono di visualizzare ottimamente le arterie renali e la porzione corticale del rene. Dopo circa 80 secondi dalla somministrazione è possibile visualizzare al meglio la regione midollare renale e osservare quindi le parti più interne dellorgano. Dopo alcuni minuti, il mezzo di contrasto dovrebbe aver percorso gli ureteri e raggiunto la vescica, quindi immagini ottenute in questo momento possono dimostrare o meno la funzionalità renale e la pervietà delle vie escretrici.

Altri organi e strutture pelviche possono essere studiate tramite TC, alla ricerca di cisti, neoplasie, malformazioni. Tuttavia, vista la non indifferente dose di radiazioni, spesso si preferiscono almeno in prima istanza altre metodiche di imaging come lecografia e la risonanza magnetica. Discorso a parte può essere fatto per il colon il quale, grazie ai progressi negli algoritmi di ricostruzione delle immagini, può essere studiato tramite colonscopia virtuale che permette, senza il fastidio e i rischi della colonscopia tradizionale, di ricercare malformazioni, ostruzioni, diverticoli, patologie infiammatorie, polipi e neoplasie. In certi contesti, la colonscopia virtuale è stata proposta anche come indagine di screening per il carcinoma del colon-retto.

Infine, tutti gli organi addominali possono essere valutati tramite TC in caso di un forte trauma che possa far sospettare delle lesioni ad essi.

                                     

4.7. Impiego clinico Studio delle ossa e delle articolazioni

Nonostante laffermazione della risonanza magnetica nucleare per lo studio delle articolazioni abbia ridotto il campo di applicazione della tomografia computerizzata, la velocità di questultima associata alla possibilità di ricostruzioni tridimensionali, hanno permesso alla TC di continuare a svolgere un ruolo di primo piano nella diagnosi di fratture complesse e nelle situazioni di urgenza. Tra i distretti ossei più studiati in TC sempre più spesso vi è il bacino. Nonostante tutto ciò, soprattutto per motivi radioprotezionistici e di costi, le fratture di più semplice diagnosi vengono valutate tramite radiografia tradizionale, relegando la tomografia per le situazioni dubbie e nei casi in cui non si abbia un paziente collaborante.

Sicuramente lelemento scheletrico losso è la porzione anatomica studiabile in TC con i migliori risultati, tuttavia, in particolari casi selezionati, lutilizzo di mezzo di contrasto, sia per via endovenosa che per iniezione intrarticolare, permette la visualizzazione degli elementi cartilaginei, muscolari e legamentosi. Talvolta la TC può essere utilizzata come supporto per procedure come la biopsia ossea e il trattamento degli osteomi. La metodica può essere, inoltre, utilizzata anche per la diagnosi e la valutazione in corso di trattamento dellosteoporosi.

Inoltre anche la colonna vertebrale, nonostante la risonanza magnetica sia considerata il gold standard per molte sue patologie, può essere studiata in TC, in particolare alla ricerca di ernia del disco, protrusioni, fratture o crolli vertebrali nonché patologie neoplastiche. Le ricostruzioni sui vari piani dello spazio sono spesso indispensabili per una corretta diagnosi.

Anche gli utenti hanno cercato:

...
...
...